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We are developing new computational tools for 
supersonic parachute inflation.

Low Density Supersonic Decelerator (LDSD) project's Supersonic Flight Dynamics Tests (SFDT)
June 28, 2014 (SFDT 1), and June 8, 2015 (SFDT 2)

Disksail Parachute Ringsail Parachute
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Exploratory study in FY16 revealed no current 
code had the needed capability.

• Strategic R&TD
– Greg Davis (Original Initiative Lead), Chris Tanner 

(Current Initiative Lead)
– Visits/consultations with Sandia, NASA ARC, 

Academia
• Challenging Fluid-Structure Interaction (FSI) Problem:

– Couple a moving structure with large relative 
motion to a fluid 

• Moving (Lagrangian) structural mesh and 
stationary (Eulerian) fluid mesh

– Supersonic compressible flow
• Turbulent wakes (entry vehicle, suspension 

lines, canopy)
• Geometric and material porosity

– Changing structural topology with
• Massive self-contact
• Nonlinear material (fabric) stress-strain

ASPIRE Supersonic Parachute 
Flight Test, Oct. 4, 2017

https://www.jpl.nasa.gov/video/
details.php?id=1507



15 October 2018 Advanced Modeling of Fluid-Structure Interaction for Softgoods 4

JPL-Stanford team formed in FY17 to leverage 
prior DOD investment in new FSI technology.

• Stanford numerical framework is embodied in AEROF 
and AEROS open source codes (https://bitbucket.org.frg)

• New approach for fluid-structure interaction (FSI) 
validated on DOD applications

Image Credit: Charbel Farhat

https://bitbucket.org.frg/
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Our project adds capabilities required for 
specific application to supersonic parachutes.

• JPL:  Leads V&V and implementation
– Armen:  Structural Modeling (AEROS)
– Jason:  CFD (AEROF)
– Lee:  Uncertainty Quantification (UQ)

• Stanford:  Leads code development
– Farhat Research Group (FRG)
– Numerical method development
– Software development

• Frequent interactions between JPL and Stanford
– Excellent interactions with a highly responsive 

Stanford team (especially with code 
development and debugging)

• Cross-agency interactions with ARC,
JSC, Universities, Industry
– Annual TIM’s
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Traditional FSI Method:  Arbitrary Lagrangian-
Eulerian (ALE)

• Eulerian (stationary) Fluid Mesh
• Lagrangian (moving) Structural 

Mesh
• Coupled by distorting the fluid mesh 

to follow the structure
• Pros:

– Direct mapping of flow to 
structure boundary condition

• Cons
– Complex mesh generation
– Severe ill-conditioning of 

distorted mesh for large motions 
• Implemented in existing commercial 

codes (LS-Dyna)
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New FSI Technology:  Embedded Boundary 
Method

• Finite Volume Exact Riemann 
(FIVER) Method
– Fluid mesh remains stationary
– Flow mapped to moving 

structural mesh
• Pros:

– Allows large structural 
motion and topological changes

– Simplifies mesh generation 
procedure

• Cons
– Complex numerical 

treatment for the fluid-structure interface
– Difficult to track boundary layer and shocks without 

adaptive mesh refinement (AMR)

A family of position- and orientation-independent 
embedded boundary methods for viscous flow 

and fluid–structure interaction problems, 
https://doi.org/10.1016/j.jcp.2018.03.028

Image Credit: Raunak Borker
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FIVER relies on Adaptive Mesh Refinement 
(AMR) to resolve boundary layers and shocks

|Wm – Wh
m|∞,k   ≤ c|Wm - Ph Wm|∞,k  ≤ cd maxe |eTH e|   m = 1, …, n

Cea’s lemma
(elliptic)

Taylor series

scheme-independent
(curvature)

Figures taken from: R. Borker, D. Z. Huang, S. Grimberg, C. Farhat, P. Avery, J. Rabinovitch, “An Adaptive Mesh 
Refinement Approach for Viscous Fluid-Structure Computations Using Eulerian Vertex-Based Finite Volume 

Methods,” in process.

Automatically Adapted
Fluid Mesh Based on Error Bound

Supersonic Flow Past a Sphere 
using FIVER and AMR



MSL Parachute Schematic 
(Cruz et al., AIAA 2013-1250) 
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FY 17’s DGB “Gen-I” begins simulation in “as-
built” configuration.

• Includes
– Supersonic

flow
– Viscosity
– Linear fabric 

model
• Excludes

– Entry body
– Suspension 

line flow Initial Condition Showing AMR Mesh Around 
Flow Feature
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3D DGB “Gen-I” Inflation Simulation Results

Cross-section through 3D Pressure Field
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DGB Gen-I illustrates the AMR refinement with 
reversible coarsening capability.

Figures taken from: R. Borker, D. Z. Huang, S. Grimberg, C. Farhat, P. Avery, J. Rabinovitch, “An Adaptive Mesh 
Refinement Approach for Viscous Fluid-Structure Computations Using Eulerian Vertex-Based Finite Volume 

Methods,” in process.



15 October 2018 Advanced Modeling of Fluid-Structure Interaction for Softgoods 14

DGB Gen-II (underway) will start with a 
“stretched” initial condition

• Massive “self-contact” in the canopy structure was a 
computational challenge

• DGB Gen-II also includes
– Material fabric nonlinearity
– Entry vehicle, riser and triple bridle

• First simulations expected Q1/FY19
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JPL Model V&V and UQ Efforts
• Using practices from Sandia “Quantification of Margins 

and Uncertainties” (QMU) 
• Development of Phenomena Identification and Ranking 

Table (PIRT) identified modeling gaps
– Verification Test Suite (VERTS)
– Validation Test Suite (VALTS)

• JPL VERTS 
supplemental to 
the existing 
Stanford test 
regression suite

PIRT for QOI Peak Strain Importance

ID Phenomena QoI Math Model Code Validation Parameters
A Parachute Packed on Vehicle
A1 Packing patterns U M L U U
A2 Pre-load & and Pre-Stress due to packing pressure U H H H H
A3 Type of parachute (parachute configuration) H L L L L
A4 Thermal and atmospheric environment inside the bag L L L L L
B Bag Deployment
B1 Initial deployment physics U H H L U
B2 Transmission of dynamic loads into parachute bag due 

to deployment
B2.1 High-frequency shock wave (elastic) propagation into 

the lines+parachute bag due to deployment mechanism 
(mortar, drogue, etc.)

L H H U U

B2.2 Low-freqeuency dynamic loads due to deployment H H H U U

B3 Tangling of the lines (i.e., bridles, risers, suspension 
lines) H H L U U

B4 Inertial loads due to vehicle L H H M U

Adequacy for Intended Use
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Example Structural Verification Test:
Seam Modeling Benchmark
• Informs seam modeling choices

– Topology
– Element type
– Mesh density
– Nonlinear fabric model

Lateral
Load

Longitudinal 
Load

seam

canopy

Mesh
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Example Fluid Verification Tests

• Shock Tube Porous Flow

• Orion Capsule (includes validation test data)
Fabric Pore Barrel Shock

Subsonic

Supersonic

Wind Tunnel
Test
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End of FY 19 Goal:  Simulation Comparison 
with Test

• DGB Gen II and III
– Sharable configuration with Stanford
– Expected New Model Features

• Stretched initial condition
• Nonlinear fabric model
• Entry vehicle, triple bridle and 

riser
• Suspension line flow
• Seam details

• JPL-Only Models (Flight configurations)
– ASPIRE
– LDSD
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Qualitative Comparison DGB Gen-I with 
ASPIRE

• Quantitative comparison with Gen-II and Gen-III models 
FY19

• Exploring follow-on infusion in support of ASPIRE and 
SRL
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